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Abstract 
In this paper, three examples of non-Hermitian Hamiltonians were presented 
on which an approach was applied based on the Heisenberg equation of mo-
tion, namely a first-order equation in the coordinate and momentum. 
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1. Introduction 

For some time, non-Hermitian Hamiltonians have been at the center of intense 
scientific activities of research in theoretical physics. Our motivation to write this 
paper comes from a recent work in which the non-Hermitian Hamiltonians are 
treated by an approach that is presented in Ref. [1]. We know that in quantum 
mechanics, observables are realized in terms of self-adjoint operators on the Hil-
bert space. It is for these operators that the spectral theorem holds in Ref. [2]. 
However, in 1998 in Ref. [3], it was shown that a non-Hermitian Hamiltonians 
can still have an entirely real spectrum provided that it possesses PT symmetry. In 
several articles, one also finds other approaches aimed at solving non-Hermitian 
models. These approaches are, for instance, perturbation theory, with a variety of 
models in Refs. [4]-[8]. 

How to cite this paper: Iyela, D.B., 
Nkwambiaya, P.L. and Kibamba, N.A. (2024) 
Heisenberg Equation of Motion Approach 
to Non-Hermitian Hamiltonians with Real 
Spectrum. Open Access Library Journal, 11: 
e11537. 
https://doi.org/10.4236/oalib.1111537 
 
Received: April 5, 2024 
Accepted: December 15, 2024 
Published: December 18, 2024 
 
Copyright © 2024 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1111537
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1111537
http://creativecommons.org/licenses/by/4.0/


D. B. Iyela et al. 
 

 

DOI: 10.4236/oalib.1111537 2 Open Access Library Journal 
 

In this paper, we treat three examples of non-Hermitian Hamiltonians drawn 
from the cited references. The main idea is to apply an old approach, namely the 
Heisenberg equation of motion, and then to determine the real spectrum for these 
examples. In our analysis, we also remarked that only the second example pos-
sesses an energy spectrum multiplied through a complex phase. We construct a 
general form of the Hamiltonian that generates the three examples treated in this 
paper. We should note that by introducing a local similarity transformation, it is 
possible to put together the spectrum of either two related Hamiltonians. This 
Hamiltonian general form can be diagonalized through an algebraic approach 
namely algebra bi-Fock, and this algebra is constructed on the Hilbert space. 

We investigate three simple examples of the non-Hermitian Hamiltonians 
drawn in the literature in order to solve the real energy spectrum. In Sec.2, we 
solve the real spectra of the non-Hermitian systems and one remarks that for the 
second example, one obtains another result namely an energy spectrum multi-
plied through a complex phase. We give a much more general Hamiltonian for-
mulation in which one finds the three non-Hermitian systems. And we have in-
troduced that, through a local similarity transformation, it is possible to establish 
a link between the spectrums of either two related Hamiltonian. We summarize 
our results in Sec.4. 

2. Heisenberg Equation of Motion with Real Spectrum 

Here, we consider three examples of non-Hermitian Hamiltonians drawn in Refs. 
[7] [8] that we develop an approach based on the Heisenberg equation of motion, 
in order to determine the real spectrum. One shows that among these three exam-
ples chosen only one possesses a spectrum that is multiplied through a complex 
phase. We have introduced a general form of the Hamiltonian that generates all 
the three examples proposed in this work. 

2.1. Extended Harmonic Oscillator 

In this subsection, we recall the form of this extended harmonic oscillator given 
in Ref. [6] 

 ( )2 2 2 , 0
2

H p x i pβ
β β= + + >   (1) 

where Hβ  is non-Hermitian, and x and p the canonical coordinate and momen-
tum, which obey the following canonical commutation relations  

 [ ] [ ] [ ], , , 0, , 0.x p i x x p p= = =    (2) 

Within these canonical commutation relations, we have suppressed   in or-
der to avoid all factors related to   in our results. Let us recall that this Hamil-
tonian is not Hermitian, i.e. †H Hβ β≠ , and it is also not PT symmetric, 

 ( ) ( )1 : .PTH H PT H PTβ β β
−=    (3) 

In Equation (3) we have used the conventional definitions from Ref. [1], with P 
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and T representing the parity and time-reserval transformations given by 

 
 : , ,
 : , , .

P x x p p i i
T x x p p i i

→− → − → +
→ + → − → −

   (4) 

By considering the Equation (1), we will find the solution by deriving the posi-
tion operator x. The time evolution of the system is described by 

 , , , .x i H x p i H pβ β   = =        (5) 

this Equation (5) is known as the Heisenberg equation of motion for position and 
momentum operators. From Equations (1) and (2), we get 

 2 , .x p i p xβ β= − = −     (6) 

The main idea is to eliminate the momentum operator in Equation (6) in order 
to obtain the second order equation of motion in terms the position operator x, 

 2 0.x xβ+ =    (7) 

It is clear that this is a second order equation of motion that describes the har-
monic oscillator of frequency β. From this Equation (7), we can now write the 
Hermitian Hamiltonian under the form 

 2 2 21 1 ,
2 2

h P xβ β= +   (8) 

this Equation (8) corresponds to the following spectrum 

 1 .
2

E nβ β  = + 
 

  (9) 

2.2. Swanson Hamiltonian 

In this section we consider a Hamiltonian given in Refs. [9]-[12]. The goal is to 
solve the Swanson Hamiltonian with the Heisenberg equation of motion approach 
in order to determine its energy spectrum. The Hamiltonian form is given by 

 ( ) ( )( )2 2 2 2
0

1 tan 2 ,
2 2

iH p x p xθ= + − −    (10) 

where θ  is a real parameter, with 
4 4

θπ π
− < < . The position and conjugate mo-

mentum operators satisfy the commutation rules in Equation (2). 
It is clear that this Hamiltonian is not Hermitian, †H Hθ θ≠ , or 

 ( ) ( )1: ,PTH H PT H PTθ θ θ
−= =    (11) 

where P and T designate the parity and time-reversal transformations as defined 
in Equation (4), respectively. Then, the Heisenberg equation of motion for posi-
tion and momentum is of the same form as in Equation (5). 

By taking the Equations (5) and (2), one obtains 

 ( )( ) ( )( )1 tan 2 , 1 tan 2 .x i p p i xθ θ= − = +    (12) 

We introduce a complex factor α under the form 

 ( ) 211 tan 2 e
cos 2

ii θα θ
θ

−= − =    (13) 
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Finally, to obtain the equation of the motion, we should eliminate the momen-
tum operator p in Equation (12), which leads to an equation of motion in terms 
of the position x 

 2 0.x xα+ =    (14) 

This equation of the motion corresponding to an Hermitian Hamiltonian of the 
form 

 2 2 21 1 ,
2 2

h p xθ α= +   (15) 

whose energy spectrum corresponds to the Swanson Halmitonian given in Refs. 
[6] [7]. This Hamiltonian hθ must have the form 

 2 21 1 1e , e ,
cos 2 2 cos 2

E nθ θ
θ θωθ θ

− − = + = 
 

  (16) 

and this equation becomes, 

 1 .
2

E nθ θω
 = + 
 

  (17) 

2.3. Swanson Model 

Here, we shall take the Swanson model in its standard form, which is given in Ref. 
[8], 

 { }
2

2 2
1

1

1 1, ,
2 2 2r r
pH i x p m x
m

ω ω= + +    (18) 

with ( )2
2 11m m= −  . 

For applying our approach, which consists of first finding the Heisenberg equa-
tion of motion. 

We will also consider that this amounts to completing the square as 

 ( )2
1 2 2

1
1

1 ,
2 2

p i m x
H m x

m
ω

ω
+

= +


   (19) 

where m and ω  are the mass and angular frequency of the harmonic oscillator. 
( ),x p  is a pair of canonical coordinate and momentum, and satisfies the com-
mutation rule given in Equation (2). The Swanson model consists of two contri-
butions: a real and an imaginary term, so we have † H H=  and the Hamiltonian 
is not Hermitian, but it is PT symmetric, 

 ( ) ( )1: ,PTH H PT H PT−==    (20) 

where P and T designate the transformation given in Equation (4). By using the 
equation of motion in the Equations (5) and (2), we have 

 ( )( )2 21 1 0.x xω+ + − =     (21) 

It is easy to write the Hermetian Hamiltonian associated with this equation of 
motion, whose form is 

 ( )( )
2

2 2 2
1

1

1 1 1 ,
2 2
ph m x
m

ω= + + −    (22) 

https://doi.org/10.4236/oalib.1111537


D. B. Iyela et al. 
 

 

DOI: 10.4236/oalib.1111537 5 Open Access Library Journal 
 

This Hermitian Hamiltonian in Equation (22) has an energy spectrum 

 ( )2 2 11 1 , 0,1,2,
2nE n nω  = + − + = 

 
    (23) 

This energy spectrum corresponds to the Swanson model, with an important 
multiplicative factor. 

3. General Hamitonian 

In this section, we give the most general form of the Hamiltonian for the three 
simple examples discussed in the previous sections, which allows us to put them 
together. Before, we introduced the usual x and p operators that define the Hei-
senberg algebra. These operators are hermitians, †x x=  and †p p= . The ex-
plicit form of the general Hamiltonian is 

 ( ) ( ) ( )( )21 1 ,
2 2

H p V x i pW x W x pα
α

= + + +   (24) 

where ( )V x  and ( )W x  two real functions expressed in terms of the variable x, 
and with the complex factor α  from Equation (13). 

Let us rewrite the Equation (24) under the form 

( )( ) ( ) ( ) ( ) ( )
2

2 2 221 1 1 1 ,
2 2 2 2

H p i W x V x W x P V x W xα α
α α

   = + + + = + +   
   

(25) 

with the definition 

 ( ), .X x P p i W xα= = +    (26) 

Let us note that †X X=  remains hermitian (self-adjoint), but that †P P≠  
is not hermitian if ( ) 0W x ≠ , while these two operators define again a Heisen-
berg algebra, 

 [ ] [ ] [ ], 0, , , , 0X X X P i P P= = =    (27) 

This directly implies that the Heisenberg equations obtained for X x=  from 
either of these forms of H, once p or P are eliminated, are similars. This can be 
explicitly verified. It is an established result in Ref. [1], obtained difficult in the 
case of a series representation from Taylor of ( )W x . But it is an immediate result 
and valid for all differentiable function ( )W x . The second-order equation of mo-
tion is simply, 

 ( ) ( )2d 1
d 2

x V x W x
x
 = − + 
 

    (28) 

under this form independent of α . By substituting Equation (26) into Equation 
(25), we get 

 ( ) ( )22 2
0

1 1 1 1
2 2

H p V x W x Hα
α α
  = + + =  

  
   (29) 

it is clear that H and H0 lead to the same second-order equation of motion in x. 
However their energy spectra are not similar, because they differ through the 
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normalisation factor 
1
α

. It is not incorrect to say or think that if the equations of 

motion are similar, then the spectrums are also similar, at a near additive constant. 
Nevertheless, the real character of the spectrum of H can be established as fol-

lows, through a argument that is not related to the Heisenberg equation of motion 
for x. In complement at the result of the Ref. [1], let us consider now the situation 
concerning spectrum the real character of H. Let us introduce partner Hamilto-
nian to H, expressed in term of x and p, and not X and P, 

 ( ) ( )22
1

1 1
2 2

H p V x W xα
α

 = + + 
 

   (30) 

We shall establish that if the spectrum of 1H  is real, then the spectrum of H is 
also real, even if H is not hermitian. In particular, if α  is real and corresponds 
to a mass factor, 0mα = > , then clearly the spectrum of 1H  is real. This result 
is valid for all choices of the real functions ( )V x  and ( )W x . Let us consider a 
function ( )xΦ  such that 

 ( ) ( )d
d

x W x
x

αΦ =    (31) 

where ( )xΦ  is primitive of ( )W xα . Now consider a quantum state λψ  ei-
genstate of H, with possibly complex eigenvalue Eλ , 
 H Eλ λ λψ ψ=    (32) 

Let us then introduce the quantum state 

 
( ) ( )1 1

e , e
x x

h h
λ λ λ λϕ ψ ψ ϕ

− Φ − Φ
= =    (33) 

In calculating then the action from H over λψ  expressed in term of λϕ , it 
is immediate to establish that the state λϕ  is an eigenstate of 1H  with eigen-
value Eλ , 
 1H Eλ λ λϕ ϕ=    (34) 

However if the spectrum of the eigenvalue of 1H  is real then indeed the eigen-
values spectrum of H is also real, while H is not hermitian, and this without H 
being PT-symmetric. This completes the discussion of the Ref. [1] in a general 
way on this result in particular. 

However, a technical questions arising from and not considered in Ref. [1] con-
cerns the definition area of the operators. One works on a Hilbert space with nor-
malisable states λψ . This also touches on the boundary conditions to impose at 
infinity to the corresponding wave functions. 

In the case of a non-Hermitian Hamiltonian this can have significant conse-
quences. As well as if the spectrum of 1H  is real, of the function W(x), it is not 
certain that the states λψ  are again normalisable. It would be interesting to 
study this question in the case of a simple example with linear equations, where 
( )V x  is quadratic in x and ( )W x  contains a constant and linear term in x. 
Even if Ref. [1] is not correct to say that similar equations of motion mean sim-

ilar spectra, it is true that the discussion above which generalises and completes 
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theirs, shows that it is possible to have real spectra for non-Hermitian Hamiltoni-
ans which are PT-symmetric. The result emphasize a kind of transformation (33) 
that is similar to a local phase transformation of a scale transformation, or simi-
larity transformation in general, which yields the general property of the non-
Hermitian Hamiltonians but real spectrum. 

Indeed in the case where ( )V x  is quadratic in x (harmonic oscillator) and 
( )W x  is linear in x (constant and linear in x and α  complex), it is possible to 

diagonalize 1H  by means of bi-Fock algebras in Refs. [9] [10], namely operators 
which are not adjoint, e.g. annihilation and creation operators, but that neverthe-
less obey the same kind of Fock algebra. Then it is immediate to find the spectrum, 
even non-real, of 1H , and from this the correspondign spectrum of H, through 
the discussed transformations above. 

Then the presence of the term in ( )W x  in the relation that connects P and p, 
where we have ( ) P p i W xα= +  translating definitions of these annihilation and 
creation operators, by a shift in the term in p—a shift that is linear in x. Since all 
rest is again linear, it is possible to solve for the energy spectrum and then for the 
corresponding wave function. However, it is not certain that these wave functions 
for the eigenstates of H will be normalisable. 

Nevertheless, each of these eigenvalues of the Schr¨odinger equation is of the 
second order in x and possesses two independent linear solutions, of which one is 
obtained by the construction in term of the annihilation and creation operators of 
the bi-Fock type mentioned above. It remains then to construct the other linearly 
independent solution. It is still possible that one certain linear combination of the 
two solution is normalisable for a non-hermitian H, what should then completely 
solve the problem. It would be interesting to study the situation in the case of 

0mα = >  with ( )V x  harmonic and ( )W x  linear, in the spirit of Ref. [1] and 
the generalized results obtained above. 

4. Conclusions 

We have presented three simple examples of non-Hermitian systems in the frame-
work of quantum mechanics and remarked that these Hamiltonians all have a real 
energy spectrum. This shows that this approach is easy to use and gives good re-
sults. In our analysis, we have remarked that among these three examples in par-
ticular only the second example possesses an energy spectrum that is multiplied 
through a complex phase. This proves that it is not always obvious for two differ-
ent systems given by two different Hamiltonians to have the same equation of 
motion or the same energy spectrum. 

Furthermore, we have given a general form of the Hamiltonian that generates 
these examples. We have also introduced a local similarity transformation that 
allows us to establish a link between the spectra of either two related Hamiltonians. 
This general form of the Hamiltonian can be solved through an algebraic ap-
proach, namely bi-Fock algebras. These bi-Fock algebras allow us to diagonalize 
the general form of the Hamiltonian and determine their physical spectra, which 
are real. 
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